Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38541423

RESUMO

Poly(lactic acid) has great potential in sectors where degradability is an important advantage due to its polymer nature. The medical, pharmaceutical, and packaging industries have shown interest in using PLA. To overcome the limitations of stiffness and brittleness in the polymer, researchers have conducted numerous modifications to develop fibers with improved properties. One such modification involves using plasticizing modifiers that can provide additional and desired properties. The scientific reports indicate that low-molecular-weight esters (LME) (triethyl citrate and bis (2-ethylhexyl) adipate) affect the plasticization of PLA. However, the research is limited to flat structures, such as films, casts, and extruded shapes. A study was conducted to investigate the impact of esters on the process of forming, the properties, and the morphology of fibers formed through the melt-spinning method. It was found that the modified PLA required different spinning and drawing conditions compared to the unmodified polymer. DSC, FTIR, WAXD, and GPC/SEC analyses were performed for the modified fibers. Mechanical tests and morphology evaluations using SEM microscopy were also conducted. The applied plasticizers lowered the temperature of the spinning process by 40 °C, and allowed us to obtain a higher degree of crystallinity and a better tenacity at a lower draw ratio. GPC/SEC analysis confirmed that the polymer-plasticizer interaction is physical because the booth plasticizer peaks were separated in the chromatographic columns. The use of LME in fibers significantly reduces the temperature of the spinning process, which reduces production costs. Additives significantly change the production process and the structure of the fiber depending on their rate, which may affect the properties, e.g., the rate of degradation. We can master the degree of crystallinity through the variable amount of LME. The degree of crystallization of the polymers has a significant influence on polymer application.

2.
Appl Microbiol Biotechnol ; 108(1): 264, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489042

RESUMO

Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.


Assuntos
Materiais Biocompatíveis , Tecidos Suporte , Tecidos Suporte/química , Materiais Biocompatíveis/química , Proteínas de Bactérias , Engenharia Tecidual/métodos , Glutaral , Reagentes de Ligações Cruzadas/química
3.
Materials (Basel) ; 17(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473515

RESUMO

The application of biobased and biodegradable polymers, such as polylactide (PLA), in fused deposition modeling (FDM) 3D-printing technology creates a new prospect for rapid prototyping and other applications in the context of ecology. The popularity of the FDM method and its significance in material engineering not only creates new prospects for the development of technical sciences on an industrial scale, but also introduces new technologies into households. In this study, the kinetics of the hydrolytic degradation of samples obtained by the FDM method from commercially available PLA filaments under a thermally accelerated regime were analyzed. The investigation was conducted at the microstructural, supramolecular, and molecular levels by using methods such as micro-computed tomography (micro-CT), wide-angle X-ray diffraction (WAXD), viscosimetry, and mass erosion measurements. The obtained results clearly present the rapid structural changes in 3D-printed materials during degradation due to their amorphous initial structure. The complementary studies carried out at different scale levels allowed us to demonstrate the relationship between the observed structural changes in the samples and the hydrolytic decomposition of the polymer chains, which made it possible to scientifically understand the process and expand the knowledge on biodegradation.

4.
ACS Biomater Sci Eng ; 9(12): 6683-6697, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032398

RESUMO

Poly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.28 ± 0.07 to 0.82 ± 0.12 µm were obtained with an average surface porosity of around 50-60%. Depending on the collector type and solution concentration, a broad range of tensile strengths (in the range of 0.3-9.6 MPa), elongation at break (90-290%), and Young's modulus (5.7-26.7 MPa) at room temperature of the nonwovens could be obtained. Furthermore, samples collected on the plate collector showed a shape-memory effect with a shape-recovery ratio (Rr) of around 99% and a shape-fixity ratio (Rf) of around 96%. Biological evaluation validated the inertness, stability, and lack of cytotoxicity of PCUU nonwovens obtained on the plate collector. The ability of mesenchymal stem cells (MSCs) and endothelial cells (HUVECs) to attach, elongate, and grow on the surface of the nonwovens suggests that the manufactured nonwovens are suitable scaffolds for tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Tecidos Suporte , Materiais Biocompatíveis/farmacologia , Tecidos Suporte/química , Uretana , Ureia , Células Endoteliais , Carbamatos
5.
Sci Total Environ ; 866: 161401, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36608826

RESUMO

The degradation of bio-based plastic materials in field soil under natural conditions was investigated in this study. Three bio-based plastics materials, which contained polylactide (PLA) with polybutylene adipate terephthalate and additives (PLA_1), PLA-based polyester blend with mineral filler (PLA_2), and polybutylene succinate with mineral filler (PBS_1) in the form of the film, were subjected to soil burial biodegradation processes. The experiments were carried out in a climate with an average annual temperature of 9.4 °C, in winter and summer periods for one year. The degradation of the materials was evaluated by macro- and microscopic observations, weight loss, thermogravimetric analysis, and tensile test. Macroscopic observation indicated that changes in the color of film surface were visible for samples PBS_1 after 12 months of degradation. Using microscopic inspection the erosion of surface samples PLA_1 and PBS_1 after 12 months was observed. Mass loss of samples PLA_1 and PLA_2 after one year of degradation were below 0.6 %. Moreover, for PBS_1 sample, mass loss was equal to 4.3 %. Based on the obtained results of the mass loss, a description of the degradation kinetics was proposed, showing the changes in the thickness of the tested polymer over time. The thermal stability of the samples PLA_1 and PLA_2 decreased during the degradation process by 16.1 and 2.6 °C, respectively, and for PBS_1 increased by 1.7 °C. Tensile strength at break after 12 months of degradation decreased for sample PLA_1 and PLA_2 by 27.3 and 5.8 %, respectively, and increased for sample PBS_1 by 28.2 % compare to unexposed sample.

6.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886960

RESUMO

The obligatory step in the life cycle of a lytic bacteriophage is the release of its progeny particles from infected bacterial cells. The main barrier to overcome is the cell wall, composed of crosslinked peptidoglycan, which counteracts the pressure prevailing in the cytoplasm and protects the cell against osmotic lysis and mechanical damage. Bacteriophages have developed two strategies leading to the release of progeny particles: the inhibition of peptidoglycan synthesis and enzymatic cleavage by a bacteriophage-coded endolysin. In this study, we cloned and investigated the TP84_28 endolysin of the bacteriophage TP-84, which infects thermophilic Geobacillus stearothermophilus, determined the enzymatic characteristics, and initially evaluated the endolysin application as a non-invasive agent for disinfecting surfaces, including those exposed to high temperatures. Both the native and recombinant TP84_28 endolysins, obtained through the Escherichia coli T7-lac expression system, are highly thermostable and retain trace activity after incubation at 100 °C for 30 min. The proteins exhibit strong bacterial wall digestion activity up to 77.6 °C, decreasing to marginal activity at ambient temperatures. We assayed the lysis of various types of bacteria using TP84_28 endolysins: Gram-positive, Gram-negative, encapsulated, and pathogenic. Significant lytic activity was observed on the thermophilic and mesophilic Gram-positive bacteria and, to a lesser extent, on the thermophilic and mesophilic Gram-negative bacteria. The thermostable TP84_28 endolysin seems to be a promising mild agent for disinfecting surfaces exposed to high temperatures.


Assuntos
Bacteriófagos , Desinfetantes , Bactérias/metabolismo , Bacteriófagos/metabolismo , Biofilmes , Fatores Biológicos , Clonagem Molecular , Endopeptidases/genética , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Peptidoglicano/metabolismo
8.
Materials (Basel) ; 14(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668318

RESUMO

A parastomal hernia is a common complication following stoma surgery. Due to the large number of hernial relapses and other complications, such as infections, adhesion to the intestines, or the formation of adhesions, the treatment of hernias is still a surgical challenge. The current standard for the preventive and causal treatment of parastomal hernias is to perform a procedure with the use of a mesh implant. Researchers are currently focusing on the analysis of many relevant options, including the type of mesh (synthetic, composite, or biological), the available surgical techniques (Sugarbaker's, "keyhole", or "sandwich"), the surgical approach used (open or laparoscopic), and the implant position (onlay, sublay, or intraperitoneal onlay mesh). Current surface modification methods and combinations of different materials are actively explored areas for the creation of biocompatible mesh implants with different properties on the visceral and parietal peritoneal side. It has been shown that placing the implant in the sublay and intraperitoneal onlay mesh positions and the use of a specially developed implant with a 3D structure are associated with a lower frequency of recurrences. It has been shown that the prophylactic use of a mesh during stoma formation significantly reduces the incidence of parastomal hernias and is becoming a standard method in medical practice.

9.
Materials (Basel) ; 13(9)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370209

RESUMO

In this study, differences in the kinetics of the thermal-supported hydrolytic degradation of polylactide (PLA) wet spinning fibres due to material variance in the initial molecular and supramolecular structure were analysed. The investigation was carried out at the microstructural and molecular levels by using readily available methods such as scanning electron microscopy, mass erosion measurement and estimation of intrinsic viscosity. The results show a varying degree of influence of the initial structure on the degradation rate of the studied PLA fibres. The experiment shows that hydrolytic degradation at a temperature close to the cold crystallization temperature is, on a macroscopic level, definitely more rapid for the amorphous material, while on a molecular scale it is similar to a semi-crystalline material. Furthermore, for the adopted degradation temperature of 90 °C, a marginal influence of the pH of the degradation medium on the degradation kinetics was also demonstrated.

10.
Materials (Basel) ; 13(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033314

RESUMO

In this work, a multifunctional polymer composite is made using melt-blowing technology from polypropylene (88 wt.%) and poly (ethylene terephthalate) (12 wt.%) with the addition of functional modifiers, that is, 3 g of a superabsorbent polymer and 5 g of a biocidal agent (Biohaloysite). The use of modifiers is aimed at obtaining adequate comfort when using the target respiratory protection equipment (RPE) in terms of microclimate in the breathing zone and protection against harmful aerosols including bioaerosols. The developed production method is innovative in that the two powdered modifiers are simultaneously applied in the stream of elementary polymeric fibers by two independent injection systems. Aerosols of the modifiers are supplied via a specially designed channel in the central segment of the die assembly, reducing the amount of materials used in the production process and saving energy. The results show that the proposed method of incorporating additives into the fiber structure did not adversely affect the protective and functional properties of the resulting filtration nonwovens. The produced nonwoven composites are characterized by SEM, FTIR, and differential scanning calorimetry (DSC). Given their high filtration efficiency at 5%, satisfactory airflow resistance (~200 Pa), very good antimicrobial activity, and excellent water absorption capacity, the obtained multifunctional nonwoven composites may be successfully used in filtering respiratory protective devices.

11.
Polymers (Basel) ; 11(3)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30960543

RESUMO

This study analyzed the structural changes of semicrystalline polylactide (PLA) in the form of spun-bonded mulching nonwovens, during outdoor composting. The investigation was carried out at the microstructural, supramolecular and molecular levels using scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and the viscosity method, respectively. The obtained experimental results revealed how the popular outdoor composting method, realized under two different European climatic conditions (in Poland and in Bulgaria), affects the degradation of PLA nonwoven, designed for agriculture use. The results showed the insignificant influence of the climatic conditions and prepared compost mixtures on the molecular and micromorphological structure of PLA spun-bonded mulching nonwovens, with a visible increase in crystallinity after the first year of composting. Significant changes were observed only after the second year of composting, which indicates the resistance of semicrystalline PLA to degradation in outdoor composting conditions.

12.
Metab Brain Dis ; 33(4): 989-1008, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29542037

RESUMO

Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.


Assuntos
Autofagia/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Humanos , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
Polymers (Basel) ; 10(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30966286

RESUMO

In this paper, the influence of the various degradation conditions, on the molecular and supramolecular structure of polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA) copolymer during degradation is described. The experiment was carried out by the use of injection molded samples and normalized conditions of biodegradation in soil, composting and artificial weathering. Materials were studied by size-exclusion chromatography (SEC) coupled with multiangle laser light scattering (MALLS) detection and wide-angle X-ray diffraction (WAXD). Additionally, the physical and mechanical properties of the samples were determined. The performed experiments clearly show difference impacts of the selected degradation conditions on the macroscopic, supramolecular and molecular parameters of the studied aliphatic polyesters. The structural changes in PBS and PBSA explain the observed changes in the physical and mechanical properties of the obtained injection molded samples.

14.
Postepy Biochem ; 64(4): 262-276, 2018 Dec 29.
Artigo em Polonês | MEDLINE | ID: mdl-30656911

RESUMO

Genetic and immunological diseases, despite many attempts to develop effective treatments, still remain a great challenge for medicine. Current therapies of these diseases consist of pharmacological alleviation of symptoms, rehabilitation and psychological help which, although very important, are not sufficient. Therefore, searching for new therapeutics which could remove the major causes of these diseases is of particular importance for the society. Natural compounds reveal many biological activities which makes them candidates for drugs in such diseases. One of them is genistein, a compound from the group of flavonoids. As it affects multiple processes, genistein has become in the center of interest of many scientists working on diseases of various etiology, course and inheritance. It was used in experimental therapies of some genetic diseases (Huntington's disease, amyotrophic lateral sclerosis Parkinson disease, cystic fibrosis), as well as autoimmunological diseases and allergies. Clinical trials with the use of genistein in treatment of patients suffering from Alzheimer's diseases and mucopolysaccharidosis type III are ongoing. The employment of differential properties of genistein in attempts to treat each of these diseases is of special interest. In this review, detailed molecular mechanisms of genistein action are summarized in the light of therapies of the above mentioned genetic and immunological diseases, including description of therapeutic potentials of each activity of this isoflavone, efficiency of its action, and its potential use as a drug in the future.


Assuntos
Genisteína/farmacologia , Genisteína/uso terapêutico , Doenças do Sistema Imunitário/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Esclerose Amiotrófica Lateral/tratamento farmacológico , Esclerose Amiotrófica Lateral/genética , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Mucopolissacaridose III/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética
15.
Polymers (Basel) ; 9(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30970693

RESUMO

In this paper, the influence of the molecular structure of polylactide (PLA)-characterised by its molar mass and content of d-lactide isomer-on the molecular ordering and α'⁻α form transition during fibre manufacturing by the wet spinning method is described. Fibres were studied by wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). Additionally, the physical and mechanical properties of the fibres were determined. This study also examines the preliminary molecular ordering and crystallisation of PLA fibres at various draw ratios. The performed experiments clearly show the dependence of the molecular ordering of PLA on the molar mass and d-lactide content during the wet spinning process. The fibres manufactured from PLA with the lowest content of d-lactide and the lowest molar mass were characterised by a higher tendency for crystallisation and a higher possibility to undergo the disorder-to-order phase transition (α' to α form). The structural changes in PLA explain the observed changes in the physical and mechanical properties of the obtained fibres.

16.
Sensors (Basel) ; 14(9): 16816-28, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211197

RESUMO

The unique properties of graphene, such as the high elasticity, mechanical strength, thermal conductivity, very high electrical conductivity and transparency, make them it an interesting material for stretchable electronic applications. In the work presented herein, the authors used graphene and carbon nanotubes to introduce chemical sensing properties into textile materials by means of a screen printing method. Carbon nanotubes and graphene pellets were dispersed in water and used as a printing paste in the screen printing process. Three printing paste compositions were prepared-0%, 1% and 3% graphene pellet content with a constant 3% carbon nanotube mass content. Commercially available materials were used in this process. As a substrate, a twill woven cotton fabric was utilized. It has been found that the addition of graphene to printing paste that contains carbon nanotubes significantly enhances the electrical conductivity and sensing properties of the final product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...